NEXT PV kick-off meeting, ENSCP december 17th, 2012

LGEP presentation
Laboratoire de Génie Électrique de Paris, UMR CNRS 8507
(Electrical Engineering Lab.)

Denis MENCARAGLIA
Senior Scientist at CNRS
Head of Materials and Devices for Electronics (MADELEC) Dpt.
Laboratoire de Génie Electrique de Paris (UMR 8507)

100 people: 34 Researchers (CNRS, Universities)
16 Engineers/Technicians
50 PhD students and post-docs
STAFF (June 2012):

- 9 permanent researchers
- 11 PhD students/post-doc researcher
- 5 engineers and technicians from MADELEC Department

Objectives:

- to study semiconductors and devices that can be useful for photovoltaics and optoelectronics
- to develop electronic characterization techniques from the macroscopic level down to the nanoscale and related modeling
Development of characterization techniques
« CAMADISC Platform »

TOPICS:
Thin Film Semiconductors for Photovoltaics

- Silicon thin films and interfaces with c-Si : a-Si:H, µc-Si:H, pm-Si:H and SiNMWs.
- CIGS thin films.
- Organic Semiconductors.

TOPICS:
Wide bandgap semiconductors for Optoelectronics

- CVD Diamond (polycrystalline, homoepitaxial).
- III-V Nitrides
« CAMADISC Platform » :

Electrical and photo-electrical characterization

- Conductivity in the dark (3)
- Conductivity under dc light (3)
- Constant Photocurrent (CPM) ac and dc,
- Modulated Photocurrent (MPC) (4)
- Steady-state Photocarrier Grating, SSPG (2)
- Solar simulator (up to 10 suns)
- Time-of-Flight (TOF)
- Admittance Spectroscopy: capacitance and conductance vs T, f, V (2)
- DLTS
- Thermally Stimulated Current (TSC)
- Spectral Photoresponse incl. mapping

Solar cell under test

Accelerated light-soaking

Modulated Photocurrent
Optical characterization

- Transmission/reflection measurements from 200 nm to 3 µm
- FTIR measurements
- Confocal µ-Raman/µ-PL and AFM/SNOM

Topography and Electrical nanocharacterization

- 5 Atomic Force Microscope (AFM) (2 Veeco, 1 Mol. Imaging, Witec, Nanosurf) with the home made electrical extension “Resiscope”
Numerical Modeling

THIN FILMS:
DEOST (Density Of States)

Calculation of the photocurrent in different regimes (steady-state, ac small signal, transient) to simulate many experimental techniques (SSPC, SSPG, MPG, MPC, TPC…):
- Evaluation of some material parameters (capture cross sections, mobilities…),
- influence of some parameters on measurements,
- validation of theoretical development of new characterization techniques.

PV DEVICES:
- 1D modeling:
 - AFORS-HET (Automat FOR Simulation of HETerostructures)
 - Logiciel Samah
 Simulation of photoluminescence and electroluminescence techniques
- 2D modeling:
 - SILVACO-TCAD
 Modeling of specific structures (IBC Si HJ, Silicon nanowires)
National Projects:

- **ANR (National Research Agency)**
 - SiFLEX (Jan 2009-Dec 2011), Silicon nanowires on flexible substrates
 - ULTRACIS (Jan 2009-Dec 2011), Very thin CIS films for PV
 - NewPVonGlass (Jan 2009-Dec 2011), New PV devices based on III-V materials (InGaN) on glass
 - SHARCC (Jan 2010-Dec 2012), Interdigitated Back Contacts Si Heterojunctions
 - CANASTA (Jan 2011-Dec 2013), Novel plasma processes for Carbon Alloyed NANocrystalline Silicon Tandem thin film solar cells
 - MULTISOLSi (Jan 2012-Dec 2015), Multispectral solar cells on Si

- **OSEO Project**: SolarNanoCrystal (End: May 2013, interrupted: end of 2011)
 Partners: PV ALLIANCE -PHOTOWATT, CEA, EDF Energies Nouvelles, EMIX, PHOTOSIL, APOLLON SOLAR, 6 CNRS laboratories.

- **ADEME project**: Polysil (Jan 2010-Dec 2014)
 Partners: SOLSIA, Solems, Air Liquide, CEA, LPICM, LGEP. Silicon Thin films

- **SOLSIA Contract** (start in 2011). Silicon Thin films

- **NANORGASOL network** (organic materials for PV applications)

- **CNRS PV Federation of Ile-de-France region**: LPICM, LGEP, IRDEP, ILV, LPN
Recent international Projects

• **NIMS-CNRS joint project** (2006/2008), Y. Koide – J.P. Kleider, **CVD diamond, UV detectors**

• **PICS**: (2008/2010), LGEP-SCM/ Ioffe Institute/ Physics and Technology Centre for Research and Education of the Russian Academy of Sciences. **IV, III-V Heterojunctions for PV.**

• **CEFIPRA**: (End: Dec 2010), LGEP-SCM/ LPICM/ SOLEMS/ Energy Research Unit of the Indian Association for the Cultivation of Science (Kolkata, Inde). **Deposition process shared with an industrial PV partner.**

• **European project FP7 HETSI**: (End: Feb 2011), CEA/ LGEP-SCM/ LPICM/ ECN/ IMEC/ ENEA/ Helmholtz-Zentrum Berlin/ IMT Neuchâtel/ Utrecht University/ Photowatt/ Solon AG/ Q-Cells). **Silicon Heterojunctions.**

• **ECOS-Sud**: (End: Dec 2011LGEP-SCM/ INTEC (Santa Fe, Argentina). **Photocurrent techniques for Si thin films.**

• **France-Canada project**: (June 2010- June 2012LGEP-SCM/ "Advanced Photovoltaics and Devices" of Toronto University. **Si thin films deposited by new adjustable plasma process and application to heterojunctions for PV.**

+ **3 international joint PhDs**:
Olga Maslova (LGEP/ Ioffe Institute (Russia)); Jennifer Luckas (LGEP/ Aachen University (Germany)); Renaud Varache (LGEP/ Helmholtz Zentrum Berlin (Germany))
Topography and Electrical nanocharacterization

- 5 Atomic Force Microscope (AFM) (2 Veeco, 1 Mol. Imaging, Witec, Nanosurf) with the homemade electrical extension "Resiscope"

AFM under vacuum and high temperatures

In-plane lateral Silicon NanoWires

AFM electrical characterization of the c-Si/a-Si:H interface

A->B Cross section
- Monitoring GaAs and GaInAs growth on silicon with negligible strain relaxation defects
- CBE ELO (Epitaxial Lateral Overgrowth) through nano-holes into an ultrathin SiO2 layer
- Goal: GaInP/Si/ GaInAs triple junction multispectral solar cell (efficiency potential of 45.5% under AM1.5G)
- Growth: IEF lab (Orsay)
- Advanced structural characterization: CEMES lab (Toulouse)

Epitaxial coherence with the Si (100) substrate
Acknowledgements

- Jean-Paul Kleider, Head of SCM group at LGEP,

For the MULTISOLSI project results

- Charles Renard, IEF
- Nikolay Cherkasin, CEMES